2D Phosphorene Nanosheets Biosensor for Haptoglobin

Exploration of 2-Dimensional Bio-functionalized Phosphorene Nanosheets (Black Phosphorous) for Label free Haptoglobin Electro-immunosensing Applications.
Satish Tuteja and Suresh Neethirajan.
Nanotechnology (Link)

We report on the development of an antibody-functionalized interface based on electrochemically active liquid-exfoliated two-dimensional phosphorene (Ph) nanosheets—also known as black phosphorous nanosheets—for the label-free electrochemical immunosensing of a haptoglobin (Hp) biomarker, a clinical marker of severe inflammation. The electrodeposition has been achieved over the screen-printed electrode (SPE) using liquid-assisted ultrasonically exfoliated black phosphorus nanosheets. Subsequently, Ph-SPEs bioconjugated with Hp antibodies (Ab), using electrostatic interactions via a poly-L-lysine (PLL) linker for biointerface development. Electrochemical analysis demonstrates that the Ab-modified Ph-SPEs (Ab@Ph-SPE) exhibit enhanced electroconducting behavior as compared to the pristine electrodes. This Ab-functionalized phosphorene-based electrochemical immunosensor platform has demonstrated remarkable sensitivity and specificity, having a dynamic linear response range from 0.01 mg/mL to 10 mg/mL for Hp in standard and serum samples with a low detection limit (~0.011 mg/mL) using the label-free electrochemical technique. The sensor electrodes were also studied with other closely relative interferents to investigate cross reactivity and specificity. This strategy opens up avenues to POC (point-of-care) and on-farm livestock disease monitoring technologies for multiplexed diagnosis in complex biological samples such as serum. The technique is simple in fabrication and provides an analytical response in less than 60 seconds.